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Abstract. In convex optimization the significance of constraint qualifications is evidenced
by the simple duality theory, and the elegant subgradient optimality conditions which com-
pletely characterize a minimizer. However, the constraint qualifications do not always hold
even for finite dimensional optimization problems and frequently fail for infinite dimensional
problems. In the present work we take a broader view of the subgradient optimality condi-
tions by allowing them to depend on a sequence of ε-subgradients at a minimizer and then
by letting them to hold in the limit. Liberating the optimality conditions in this way permits
us to obtain a complete characterization of optimality without a constraint qualification. As
an easy consequence of these results we obtain optimality conditions for conic convex opti-
mization problems without a constraint qualification. We derive these conditions by apply-
ing a powerful combination of conjugate analysis and ε-subdifferential calculus. Numerical
examples are discussed to illustrate the significance of the sequential conditions.

Key words: necessary and sufficient conditions, ε-subdifferentials, sequential optimality
conditions, convex optimization, semidefinite programs.

1. Introduction

Consider the convex optimization model problem

(P ) Minimize f (x)

subject to x ∈C, −g(x)∈S,

where C is a closed convex subset of a reflexive Banach space X, S is a
closed convex cone of another reflexive Banach space Z, which does not
necessarily have non-empty interior, f :X→R∪{+∞} is a proper lower semi-
continuous convex function and g:X→Z is an S-convex mapping, i.e., con-
vex with respect to the cone S. In the case where g is continuous and f is
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continuous at a feasible point a ∈ dom f of (P ), a constraint qualification
ensures that the point a is a minimizer of (P ) if and only if there exists
λ∈ S+, u∈ ∂f (a), v ∈ ∂(λ ◦ g)(a) and w ∈NC(a) satisfying u+ v +w = 0 and
(λ ◦ g)(a)= 0. Here S+ is the dual cone of S, NC(a) is the normal cone of
C at a and ∂f (a) and ∂(λ ◦ g)(a) are the convex subdifferentials of f and
λ ◦ g at a, respectively. Unfortunately, the constraint qualifications do not
always hold even for the finite dimensional optimization problems (P ) and
frequently fail for problems (P ) in infinite dimensions, and they hinder appli-
cations and numerical solution methods. The geometric constraint, x ∈C, has
often been the main source of constraint qualification violation for problems
(P ), where the interior of C may be empty.

Over the years a great deal of attention has been focussed on developing sub-
gradient optimality conditions that do not use constraint qualifications (see [1,
12, 16] and other references therein). As a result various modified subgradient
optimality conditions have been given in the literature [1, 10, 16]. In the present
work we take a general view of the subgradient optimality conditions by allow-
ing them to depend on a sequence of ε-subgradients at a minimizer and then
letting them to hold in the limit. Very recently, liberating the optimality condi-
tions in this way permitted us to obtain a complete sequential characterization
of optimality without a constraint qualification for the special case of the model
problem (P ), where f is a real-valued continuous convex function and C =X

(see [12]). However, even the sequential subgradient conditions, given in [12],
may not be valid for the general model (P ) as ∂f (a) may be empty (see Example
3.1).

In this paper we show that a more general sequential subgradient opti-
mality condition, that does not use constraint qualifications, always holds
for the general case of (P ). More precisely, we establish that a feasible
point a ∈dom f is a minimizer of (P ) if and only if there exist sequences
{εn}⊂R+, {λn}⊂S+, {un}, {vn}, {wn}⊂X′ such that un ∈∂εn

f (a), vn ∈∂εn
(λn ◦

g)(a),wn ∈N
εn

C (a) and

un +vn +wn →∗ 0, εn →0 and (λn ◦g)(a)→0 as n→∞.

where ∂εh(a) is the ε-subdifferential of a function h at a and the weak∗

convergence of a sequence {tn} of X′ to t is denoted by tn →∗ t . We derive
the sequential condition by applying a powerful combination of conjugate
analysis and ε-subdifferential calculus [4, 5, 7].

We also obtain another sequential condition involving only the subgradi-
ents at nearby points to a minimizer by an application of the Brondsted–
Rockafellar theorem [2, 16] which paves the way for describing an
ε-subgradient at a point in terms of the subgradients at nearby points. Using
the theory of sequential subdifferential calculus [7], similar conditions have
recently been given in [16] for the particular case of (P ) in infinite dimensions,
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where S is assumed to be a normal cone and f is a real-valued convex
function.

The paper is organized as follows. Section 2 explains some basic results
on convex sets and functions, and brings out important dual connections
between the feasible set and the epigraphs of conjugate functions that will
be used later in the paper. Section 3 presents the sequential subgradient
necessary and sufficient optimality conditions, and also provides complete
characterizations of optimality for conic convex optimization problems.
The significance of the sequential conditions is illustrated by numerical
examples.

2. Preliminaries

We begin by fixing some definitions and notations. We assume throughout
the paper that X and Z are reflexive Banach spaces. Let D be a closed con-
vex set in Z. The continuous dual space of X will be denoted by X′ and
will be endowed with the weak∗ topology. For the set D ⊂X, the closure of
D will be denoted cl D. If a set A⊂X′, the expression cl A will stand for
the weak∗ closure. The indicator function δD is defined as δD(x)= 0 if x ∈D

and δD(x)=+∞ if x /∈D. The support function [9] σD is defined by σD(u)=
supx∈D u(x). The normal cone of D is given by ND(x)={v ∈X′ :v(y −x)�0,

∀y ∈D} when x ∈D, and ND(x)=∅; when x /∈D. Given ε � 0, the ε-normal
cone of D is given by Nε

D(x) :={v∈X′ :σD(v)�v(x)+ε}={v∈X′ :v(y −x)�ε,

∀y ∈D} when x ∈D, and Nε
D(x)=∅ when x /∈D. Let f:X →R ∪{+∞} be a

proper lower semi-continuous convex function. Then, the conjugate function
of f , f ∗ :X′ →R∪{+∞}, is defined by

f ∗(v)= sup{v(x)−f (x)|x ∈dom f }

where the domain of f , dom f , is given by dom f = {x ∈ X|f (x) < +∞}.
The epigraph of f , epi f , is defined by

epi f ={(x, r)∈X ×R|x ∈dom f, f (x)� r}.

The subdifferential of f , ∂f :X ⇒X′ is defined as

∂f (x)={v ∈X′|f (y)�f (x)+v(y −x),∀y ∈X},

and the ε-subdifferential of f , ∂εf :X ⇒X′ is defined as

∂εf (x)={v ∈X′|f (y)�f (x)+v(y −x)− ε,∀y ∈X}.
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It follows easily from the definitions of epi f ∗ of a proper convex function
f and the ε-subdifferential of f that if a ∈domf , then

epi f ∗ =
⋃

ε�0

{(v, v(a)+ ε −f (a))|v ∈ ∂εf (a)}. (2.1)

For details see [12]. Note also that for each x ∈ X, ∂δD(x) = ND(x)

and ∂εδD(x) = Nε
D(x). It follows from the Fenchel–Moreau theorem if

f, g:X→R∪{+∞} are proper lower semi-continuous convex functions with
dom f ∩ dom g �= ∅ then epi(f + g)∗ = cl(epi f ∗ + epi g∗). If, in addition,
epi f ∗ + epi g∗ is weak ∗closed then

∂(f +g)(x)= ∂f (x)+ ∂g(x), ∀x ∈dom f ∩dom g.

For details see [15, 3]. The mapping g: X → Z is S-convex if for every u,
v ∈X and t ∈ [0,1], g(tu+ (1− t)v)− tg(u)− (1− t)g(v)∈−S.

Let A := C ∩ g−1(−S) = {x ∈ C| − g(x) ∈ S}. The connection between the
dual cone involving the feasible set of (P ) and the epigraphs of conjugate
functions involving the constraints is given by the following lemma. Note
that, for convenience, we denote the composition of mappings by juxtapo-
sition, i.e., λ◦g as λg.

LEMMA 2.1. Let C be a closed convex subset of X and let S ⊂Z be a closed
convex cone. Let g:X →Z be an S-convex function such that for each λ∈S+,
λg is lower semicontinuous. If A �=∅, then epiδ∗

A = cl(∪λ∈S+epi (λg)∗ + epi δ∗
C).

Proof. Note that, for each x ∈ X, δA(x) = supλ∈S+(λg + δC)(x). So,
δ∗
A = [infλ∈S+(λg + δC)∗]∗∗. Since infλ∈S+(λg + δC)∗ is a convex function, it

follows that

epi δ∗
A = cl

[
epi

(
inf
λ∈S+

(λg + δC)∗
)]

= cl(∪λ∈S+epi(λg)∗ + epiδ∗
C),

as epi(λg + δC)∗ = cl(epi(λg)∗ + epiδ∗
C).

A proof of Lemma 2.1, using a separation theorem [8] was initially given
in [13]. A special case of Lemma 2.1 was given in [12], where g is contin-
uous and C =X.

LEMMA 2.2. Let f : X →R ∪{+∞} be a proper lower semicontinuous con-
vex function. Let C be a closed convex subset of X and let S ⊂Z be a closed
convex cone. Let g:X→Z be an S-convex function such that for each λ∈S+,
λg is lower semicontinuous. If A �= ∅, then cl(epi f ∗ + epiδ∗

A) = cl (epif ∗ +
∪λ∈S+epi(λg)∗ + epiδ∗

C).
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Proof. By Lemma 2.1, we see that epi δ∗
A = cl(∪λ∈S+epi(λg)∗ + epiδ∗

C).
Thus, cl(epif ∗ + epiδ∗

A)= cl(epi f ∗ +cl(∪λ∈S+epi(λg)∗ + epi δ∗
C))= cl(epif ∗ +

∪λepi(λg)∗ + epiδ∗
C).

The following version of the Brondsted–Rockafellar theorem [16] will be
useful in deriving a sequential optimality conditions solely in terms of the
subdifferentials of the functions involved in (P ).

PROPOSITION 2.1. (Brondsted–Rockafellar Theorem [2, 16] ). Let f :X→
R ∩ {+∞} be a proper lower semicontinuous convex function. Then for any
real number ε >0 and any u∈∂εf (a) there exist xε ∈X and uε ∈∂f (xε) such
that

‖xε −a‖�
√

ε,‖uε −u‖�
√

ε and |f (xε)−uε(xε −a)−f (a)|�2ε.

3. Sequential Subgradient Conditions

We begin by establishing a sequential condition, in terms of epigraphs of
conjugate functions, characterizing a solution point of (P ).

THEOREM 3.1. For the problem (P ), let a ∈A∩dom f . Then the point a
is a minimizer of (P ) if and only if there exist sequences {(un, αn)}, {(vn, βn)},
{(wn, γn)} ⊂ X′ × R and {λn} ⊂ Z′ such that (un, αn) ∈ epi f ∗, (vn, βn) ∈
epi (λng)∗, (wn, γn)∈ epi δ∗

C, λn ∈S+,

un +vn +wn →∗ 0 and f (a)+αn +βn +γn →0 as n→∞.

Proof. [�⇒] Assume that a is a minimizer of (P ). Then, 0 ∈ ∂(f + δA)(a),
and by the definitions of the subdifferential and the conjugate function
of f + δA, (0,−f (a)) ∈ epi(f + δA)∗. Now, by Lemma 2.2, epi (f + δA)∗ =
cl(epi f ∗ + epi δ∗

A) = cl (epif ∗ + ∪λ∈S+epi(λg)∗ + epi δ∗
C). So, there exists a

sequence {(ūn, c̄n)} ⊂ X′ × R such that (ūn, c̄n) ∈ epi f ∗ + ∪λ∈S+epi(λg)∗ +
epi δ∗

C, ūn →∗ 0 and c̄n → −f (a). Thus there exist sequences {(un, αn)},
{(vn, βn)}, {(wn, γn)}⊂X′ ×R and {λn}⊂Z′ such that (un, αn)∈epif ∗, (vn, βn)∈
epi (λng)∗, (wn, γn)∈ epi δ∗

C, λn ∈S+,

ūn =un +vn +wn →∗ 0 and c̄n =αn +βn +γn →−f (a) as n→∞.

Conversely, assume that preceding conditions hold. Let x ∈A. Then, by
the definition of the epigraph of a conjugate function, f (x) � un(x) − αn,

0 � vn(x) − βn,0 � wn(x) − γn. Adding these three inequalities, we obtain
that

f (x)�un(x)+vn(x)+wn(x)− (αn +βn +γn).
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Passing to the limit as n→∞, we get that f (x)�f (a). As this inequality
holds for each x ∈A, the point a is a minimizer of (P ).

THEOREM 3.2. For the problem (P ), let a ∈A∩dom f . Then the point a

is a minimizer of (P ) if and only if there exist sequences {εn} ⊂ R+, {λn} ⊂
S+, {un}, {vn}, {wn} ⊂ X′ such that un ∈ ∂εn

f (a), vn ∈ ∂εn
(λng)(a),wn ∈ N

εn

C (a)

and

un +vn +wn →∗ 0 and εn →0, (λng)(a)→0 as n→∞.

Proof. [�⇒] Assume that a is a minimizer of (P ). Then, by The-
orem 3.1 there exist sequences {(un, αn)}, {(vn, βn)}, {(wn, γn)} ⊂ X′ × R

and {λn} ⊂ Z′ such that (un, αn) ∈ epi f ∗, (vn, βn) ∈ epi(λng)∗, (wn, γn) ∈
epi δ∗

C, λn ∈S+,

un +vn +wn = ūn →∗ 0 and αn +βn +γn = c̄n →−f (a) as n→∞.

Since

epi f ∗ =
⋃

ε�0

{(u, u(a)+ ε −f (a))|u∈ ∂εf (a)},

epi(λng)∗ =
⋃

η�0

{(u, u(a)+η− (λng)(a))|u∈ ∂η(λng)(a)}

and

epi δ∗
C =

⋃

ζ�0

{(v, v(a)+ ζ )|v ∈ ∂ζ δC(a)},

there exist sequences {εn}, {ηn}, {ζn}⊂R+ such that

un ∈ ∂εn
f (a) and αn =un(a)+ εn −f (a)

vn ∈ ∂ηn
(λng)(a) and βn =vn(a)+ηn − (λng)(a)

wn ∈ ∂ζn
δC(a) and γn =wn(a)+ ζn.

Then, αn + βn + γn = (un + vn + wn)(a) − f (a) − (λng)(a) + (εn + ηn + ζn) �
(un +vn +wn)(a)−f (a)+ (εn +ηn +ζn). Now, passing to the limit as n→∞,
we see that

−f (a)= lim
n→∞(αn +βn +γn)�−f (a)+ lim

n→∞(εn +ηn + ζn);
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thus, limn→∞(εn + ηn + ζn) � 0. This gives us that limn→∞ εn = 0, limn→∞
ηn =0 and ζn →0 as {εn}, {ηn} and {ζn}⊂R+.

Furthermore, as αn +βn +γn = (un +vn +wn)(a)−f (a)− (λng)(a)+ (εn +
ηn + ζn), we obtain that limn→∞(λng)(a)=0. Let εn =max{εn, ηn, ζn}. Then
εn →0 as n→+∞ and un ∈ ∂εn

f (a), vn ∈ ∂εn
(λng)(a),wn ∈N

εn

C (a).
[⇐�]The proof of the converse implication is similar to the one in The-

orem 3.1 and so is omitted.

Remark 3.1. Another version of the proof of Theorem 3.2 can also be
given by using the formula (see [7]),

∂(f + δA)(a)=
⋂

ε>0

cl[∂εf (a)+ ∂εδA(a)],

and the subdifferential calculus of [6, 17], instead of using the link between
∂(f + δA)(a) and epi(f + δA)∗, exploited in the above proof.

COROLLARY 3.1. For the problem (P ), let a ∈ A ∩ dom f . Then the
point a is a minimizer of (P ) if and only if there exist sequences {λn} ⊂
S+, {xn} ⊂ dom f, {yn} ⊂ dom (λng), {zn} ⊂ C, {un}, {vn}, {wn} ⊂ X′ such that
un ∈ ∂f (xn), vn ∈ ∂(λng)(yn),wn ∈NC(zn) and

un +vn +wn →∗ 0,‖xn −a‖→0,‖yn −a‖→0,‖zn −a‖→0,

f (xn)−un(xn −a)−f (a)→0, (λng)(yn)−vn(yn −a)→0, and

wn(zn −a)→0, as n→∞.

Proof. By Theorem 3.2, we see that if a is a minimizer of (P ), then
there exist sequences {εn} ⊂ R+, {λn} ⊂ S+, {ūn}, {v̄n}, {w̄n} ⊂ X′ such that
ūn ∈ ∂εn

f (a), v̄n ∈ ∂εn
(λng)(a), w̄n ∈N

εn

C (a) and

ūn + v̄n + w̄n →∗ 0 and εn →0, (λng)(a)→0 as n→∞.

Using Proposition 2.1, we can find sequences {xn}⊂domf, {yn}⊂dom (λng),

{zn} ⊂ C, {un}, {vn}, {wn} ⊂ X′, un ∈ ∂f (xn), vn ∈ ∂(λng)(yn) and wn ∈ NC(zn)

such that

un +vn +wn →∗ 0,‖xn −a‖→0,‖yn −a‖→0,‖zn −a‖→0 as n→∞

and

f (xn)−un(xn −a)−f (a)→0, (λng)(yn)−vn(yn −a)→0,

wn(zn −a)→0, as n→∞
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The proof of the converse implication follows along the same line of
arguments as presented earlier in this section and so is omitted.

THEOREM 3.3. For the problem (P ), assume that f :X → R is a continu-
ous convex function. If a ∈ A is a minimizer of problem (P ) if and only if
there exist u ∈ ∂f (a) and sequences {εn}, {λn} ⊂ R+ and {un}, {vn} ⊂ X′ such
that un ∈ ∂εn

(λng)(a), vn ∈N
εn

C (a) and

u+un +vn →∗ 0, εn →0, (λng)(a)→0 as n→+∞.

Proof. The point a is a minimizer of problem (P ) if and only if 0 ∈
∂(f + δA)(a) = ∂f (a) + ∂δA(a). Thus, there exist u ∈ ∂f (a) and
v ∈ ∂δA(a) such that u + v = 0. By Lemma 2.1, we have that epi
δ∗
A =cl(∪λ∈S+epi(λg)∗ +epi δ∗

C). Since v∈∂δA(a), (v, v(a))∈epi δ∗
A, there exist

sequences {(un, αn)}, {(vn, βn)}, {(wn, γn)} ⊂ X′ × R and {λn} ⊂ Z′ such that
(un, αn)∈ epi f ∗, (vn, βn)∈ epi (λng)∗, (wn, γn)∈ epi δ∗

C, λn ∈S+,

un +vn →∗ v and βn +γn →v(a)− δA(a)=v(a) as n→∞.

Now, as in the proof of Theorem 3.2, we obtain that limn→∞(λng)(a)=0
and un + vn →∗ v. Letting εn = max{ηn, ζn}, we see that un ∈ ∂εn

(λg)(a),

vn ∈ ∂εn
δC(a)=N

εn

C (a), so, un +vn →∗ v =−u and εn →0, as n→+∞.
The following example illustrates that the sequential condition, given in

[12] (see Theorem 3.3) does not hold, whereas the sequential condition of
Theorem 3.2 holds.

EXAMPLE 3.1. Consider the following convex programming problem:

(P 1) Minimize f (x)

subject to g(x)=max{0, x}�0
x ∈C,

where f (x)=
{−√

x if x �0
+∞ otherwise, and C = [−1,1].

Clearly, f is a lower semicontinuous convex function, g is a continuous
convex function and C is a closed convex set. The feasible set A= [−1,0]
and a =0 is the minimizer of problem (P1). Since ∂f (a)=∅, for any λ∈S+

and {εn}⊂R+,0 /∈ ∂f (a)+ ∂εn
(λg)(a)+N

εn

C (a).
Let λn =n and let εn = 1√

n
. Then, −n∈∂εn

f (a) and n∈∂(λng)(a). Indeed,
we can easily verify that for any x ∈X, −nx �f (x)+ εn, since
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−nx






<+∞=f (x) if x <0
�0�−√

x + εn =f (x)+ εn if 0�x � 1
n

<−1<−√
x <f (x)+ εn if 1

n
<x <1

�−x �−√
x <f (x)+ εn if x �1

and nx � nmax{0, x} + εn = (λng)(x) + εn. Thus, −n ∈ ∂εn
f (a) and ∂εn

(λng)

(a) = (−∞, n],Nεn

C (a) = [−εn, εn]. Let un = −n, vn = n, wn = εn. Then,
un +vn +wn = εn →0 and (λng)(a)=0.

THEOREM 3.4. For the problem (P ), let a ∈A∩ dom f . Assume that the
set epi f ∗ +∪λ∈S +epi (λg)∗ +epi δ∗

C is weak* closed. Then a is a minimizer
of problem (P ) if and only if there exists λ∈S+ such that

0∈ ∂f (a)+ ∂(λg)(a)+NC(a) and (λg)(a)=0.

Proof. Clearly, a is a minimizer of problem (P ) if and only if 0 ∈ ∂(f +
δA)(a), i.e., (0,−f (a)) ∈ epi (f + δA)(a). If epi f ∗ + ∪λ∈S + epi (λg)∗ +
epi δ∗

C is weak∗ closed, then, by Lemma 2.2,

epi(f + δA)(a)= epi f ∗ ∪λ∈S +epi(λg)∗ + epi δ∗
C.

Thus, if a is a minimizer of problem (P ), then (0,−f (a)) ∈ epi f ∗ +
∪λ∈S+epi(λg)∗ + epi δ∗

C . Thus, there exist λ ∈ S+, (u,α) ∈ epi f ∗, (v, β) ∈
∪λ∈S + epi (λg)∗ and (w, γ )∈ epi δ∗

C such that

0=u+v +w and α +β + r =−f (a).

Now simple calculations using the definition of epigraph and conjugate
function show that u∈∂f (a), v∈∂(λg)(a) and w∈∂δC(a). Thus, 0∈∂f (a)+
∂(λg)(a) + δC(a). Furthermore, −f (a) = −f (a) − (λg)(a) + ε + η + ζ =
−f (a)− (λg)(a), we have that (λg)(a)=0.

The proof of sufficiency of the subgradient condition for optimality is
well know and so is omitted.

The conclusion of Theorem 3.4 was given in Theorem 4.1 in [3] under an
additional assumption that the set ∪λ∈S+epi (λg)∗ + epi δ∗

C is weak∗ closed.
The following example illustrates that the sequential condition of Theorem
3.3 holds; whereas the condition of Theorem 3.4 does not hold.

EXAMPLE 3.2. Consider the following convex programming problem:

(P 2) Minimize f (x)=−x +y

subject to g(x)=max{0, x}+y2 �0
x ∈C,

where C = [−1,1]× [−1,1].
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Let X =R
2. Obviously, f and g are all continuous convex functions on X.

The feasible set A= [−1,0]×{0}. Clearly, a = (0,0) is the minimizer of prob-
lem (P2). Moreover, ∂f (a) = {(−1,1)}, for any λ � 0, ∂(λg)(a) = [0, λ] × {0}
and NC(a) = {(0,0)}. Thus, for any (a, b) ∈ ∂f (a) + ∂(λg)(a) + NC(a), we
have that b = 1. Thus 0 /∈∂f (a)+∂(λg)(a)+NC(a). Therefore, the subgra-
dient condition of Theorem 3.4 does not hold.

To verify the sequential condition of Theorem 3.3, let εn = 1
n
, λn = n2.

Then, N
εn

C (a) = {(u, v) || u | + | v |� εn} and (1,−1) ∈ ∂εn
(λng)(a). Indeed,

x � λn max{0, x} and −y � λny
2 + εn for any (x, y) ∈ X. Thus, −x + y �

(λng)(x) + εn, i.e., (−1,1) ∈ ∂εn
(λng)(a). Let un = (−1,1) ∈ ∂εn

(λng)(a) and
vn = (0, εn)∈N

εn

C . Then, −(un +vn)→ (1,−1)∈ ∂f (a) and λng(a)=0.
Consider the conic-convex optimization model problem:

(CCP) Minimize f (x)

subject to x ∈C,Ax =b,

where C is a closed convex cone of X,f :X →R∪{+∞} is a proper lower
semicontinuous convex function and A:X→Z is a continuous linear oper-
ator, and b ∈ Z. Many classes of constrainted interpolation problems and
approximation problems can be modelled as the conic-convex problems
(CCP). Various constraint qualifications for the problems (CCP) have been
given in the literature (see, [1], [14]). They usually require a Slater type con-
dition such as the condition that for some x0 ∈ intC, Ax0 =b. This condi-
tion often fails in applications. We deduce a complete characterization of
optimality for (CCP) without a constraint qualification.

COROLLARY 3.2. Let f :X →R∪{+∞} be a proper lower semicontinuous
convex function, C be a closed convex cone of X,A:X → Z be a continu-
ous linear mapping; let b ∈ Z. Suppose a ∈ C ∩ A−1(b). Then a is a mini-
mizer of problem (CCP) if and only if there exists {λn}⊂Z′, {εn}⊂R+ and
{un}, {wn}⊂X′, such that un ∈ ∂εn

f (a),wn ∈N
εn

C (a) and

un +wn −λnA→0 and εn →0 as n→∞.

Proof. Let g(x) = Ax − b and let S = {0}. Then the conclusion follows
from Theorem 3.2.
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15. Strömberg, T. (1996), The operation of infimal convolution, Dissertationes Mathemat-
icae, 352, 1–61.

16. Thibault, L. (1997), Sequential convex subdifferential calculus and sequential Lagrange
Multipliers, SIAM Journal of Control Optimization, 35, 1434–1444.

17. Thibault, L. (2000), Limiting convex subdifferential calculus with applications to inte-
gration and maximal monotonicity of subdifferential, Canadian Mathematical Society
Conference Proceedings, 27, 279–289.


